NUMERICAL METHODS FOR LARGE EIGENVALUE PROBLEMS Second edition
نویسنده
چکیده
منابع مشابه
A New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems
In this paper, two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS}) conjugate gradient method are presented to solve unconstrained optimization problems. A remarkable property of the proposed methods is that the search direction always satisfies the sufficient descent condition independent of line search method, based on eigenvalue analysis. The globa...
متن کاملRestarted Generalized Second-Order Krylov Subspace Methods for Solving Quadratic Eigenvalue Problems
This article is devoted to the numerical solution of large-scale quadratic eigenvalue problems. Such problems arise in a wide variety of applications, such as the dynamic analysis of structural mechanical systems, acoustic systems, fluid mechanics, and signal processing. We first introduce a generalized second-order Krylov subspace based on a pair of square matrices and two initial vectors and ...
متن کاملNumerical methods for large eigenvalue problems
Over the past decade considerable progress has been made towards the numerical solution of large-scale eigenvalue problems, particularly for nonsymmetric matrices. Krylov methods and variants of subspace iteration have been improved to the point that problems of the order of several million variables can be solved. The methods and software that have led to these advances are surveyed.
متن کاملMidwest Numerical Analysis Day 2016 Contributed Talks Theoretical and numerical approximations of the singularly perturbed convection-diffusion equations
We explore singularly perturbed convection-diffusion equations in a circular domain. Considering boundary layer analysis of the singularly perturbed equations and we show convergence results. In view of numerical analysis, We discuss approximation schemes, error estimates and numerical computations. To resolve the oscillations of classical numerical solutions due to the stiffness of our problem...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کامل